Research progress in role of abnormal metabolism of branched-chain amino acid in occurrence and development of heart failure
Author:
Affiliation:

(1. First Clinical Medical College of Lanzhou University, Lanzhou 730000, China;2. Department of Cardiology, First Hospital of Lanzhou University, Lanzhou 730000, China;3. Department of Geriatric Cardiology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Geriatric Medicine, Lanzhou 730000, China)

Fund Project:

This work was supported by the National Natural Science Foundation of China (82000277, 82060807), the Scientific Research Project ofHealth Industry of Gansu Province (GSWSKY2019-08), the Science and Technology Program of Gansu Province (21JR1RA100), theFundamental Research Funds for the China Central Universities (lzujbky-2021-kb34), and the Foundation for Scientific Research of theFirst Hospital of Lanzhou University (ldyyyn2019-46).

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The changes of myocardial energy metabolism play an important role in the occurrence and development of heart failure. In recent years, it has been found that the increase of plasma branched-chain amino acid (BCAAs) and its metabolites is an important feature of heart failure, and forms a malignant feedback loop, which will eventually lead to the progression of heart failure. By promoting the catabolism of BCAAs, reducing the accumulation of metabolites and restoring the metabolic balance of BCAAs are expected to become a new target for the treatment of heart failure. This article reviews the association between abnormal metabolism of BCAAs and heart failure.

    Reference
    [1] 中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会.中国心力衰竭诊断和治疗指南2018 [J].中华心血管病杂志, 2018,46(10):760-789.DOI:10.3760/cma.j.issn.0253-3758.2018.10.004.Heart Failure Group of Chinese Society of Cardiology, Heart Failure Professional Committee of Chinese Medical Doctor Association, Editorial Board of Chinese Journal of Cardiovascular Diseases.Guidelines for diagnosis and management of heart failure in China 2018[J].Chin J Cardiol, 2018,46(10):760-789.DOI:10.3760/cma.j.issn.0253-3758.2018.10.004.
    [2] Fillmore N, Wagg CS, Zhang L, et al.Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart[J].Am J Physiol Endocrinol Metab, 2018,315(5):E1046-E1052.DOI:10.1152/ajpendo.00097.2018.
    [3] Ingwall JS.Energy metabolism in heart failure and remodelling[J].Cardiovasc Res, 2009,81(3):412-419.DOI:10.1093/cvr/cvn301.
    [4] Murashige D, Jang C, Neinast M, et al.Comprehensive quantification of fuel use by the failing and nonfailing human heart[J].Science, 2020,370(6514):364-368.DOI:10.1126/science.abc8861.
    [5] Zhang S, Zeng X, Ren M, et al.Novel metabolic and physiological functions of branched chain amino acids:a review[J].J Anim Sci Biotechnol, 2017,8:10.DOI:10.1186/s40104-016-0139-z.
    [6] Neinast M, Murashige D, Arany Z.Branched chain amino acids[J].Annu Rev Physio, 2019,81:139-164.DOI:10.1146/annurev-physiol-020518-114455.
    [7] Ruiz-Canela M, Toledo E, Clish CB, et al.Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial[J].Clin Chem, 2016,62(4):582-592.DOI:10.1373/clinchem.2015.251710.
    [8] Uddin GM, Zhang L, Shah S, et al.Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure[J].Cardiovas Diabetol, 2019,18(1):86.DOI:10.1186/s12933-019-0892-3.
    [9] Sun H, Olson KC, Gao C, et al.Catabolic defect of branched-chain amino acids promotes heart failure[J].Circulation, 2016,133(21):2038-2049.DOI:10.1161/circulationaha.115.020226.
    [10] Lu G, Ren S, Korge P, et al.A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development[J].Genes Dev, 2007,21(7):784-796.DOI:10.1101/gad.1499107.
    [11] Lu G, Sun H, She P, et al.Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells[J].J Clin Invest, 2009,119(6):1678-1687.DOI:10.1172/jci38151.
    [12] Sansbury BE, DeMartino AM, Xie Z, et al.Metabolomic analysis of pressure-overloaded and infarcted mouse hearts[J].Circ Heart Fail, 2014,7(4):634-642.DOI:10.1161/CIRCHEARTFAILURE.114.001151.
    [13] Taglieri DM, Monasky MM, Knezevic I, et al.Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A[J].J Mol Cell Cardiol, 2011,51(6):988-996.DOI:10.1016/j.yjmcc.2011.09.016.
    [14] Haldar SM, Lu Y, Jeyaraj D, et al.Klf15 deficiency is a molecular link between heart failure and aortic aneurysm formation[J].Sci Transl Med, 2010,2(26):26ra26.DOI:10.1126/scitranslmed.3000502.
    [15] Tso SC, Gui WJ, Wu CY, et al.Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase[J].J Biol Chem, 2014,289(30):20583-20593.DOI:10.1074/jbc.M114.569251.
    [16] Wang W, Zhang F, Xia Y, et al.Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction[J].Am J Physiol Heart Circ Physiol, 2016,311(5):H1160-H1169.DOI:10.1152/ajpheart.00114.2016.
    [17] Li T, Zhang Z, Kolwicz S, et al.Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury[J].Cell Metab, 2017,25(2):374-385.DOI:10.1016/j.cmet.2016.11.005.
    [18] Chen M, Gao C, Yu J, et al.Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure[J].J Am Heart Assoc, 2019,8(11):e011625.DOI:10.1161/jaha.118.011625.
    [19] Kitaura Y, Shindo D, Ogawa T, et al.Antihypertensive drug valsartan as a novel BDK inhibitor[J].Pharmacol Res, 2021,167:105518.DOI:10.1016/j.phrs.2021.105518.
    [20] Ananieva EA, Powell JD, Hutson SM.Leucine metabolism in T cell activation:mTOR signaling and beyond[J].Adv Nutr, 2016,7(4):798S-805S.DOI:10.3945/an.115.011221.
    [21] Huang Y, Zhou M, Sun H, et al.Branched-chain amino acid metabolism in heart disease:an epiphenomenon or a real culprit?[J].Cardiovasc Res, 2011,90(2):220-223.DOI:10.1093/cvr/cvr070.
    [22] Saunders RN, Metcalfe MS, Nicholson ML.Rapamycin in transplantation:a review of the evidence[J].Kidney Int, 2001,59(1):3-16.DOI:10.1046/j.1523-1755.2001.00460.x.
    [23] Sciarretta S, Forte M, Frati G, et al.New insights into the role of mTOR signaling in the cardiovascular system[J].Circ res, 2018,122(3):489-505.DOI:10.1161/CIRCRESAHA.117.311147.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:247
  • PDF: 550
  • HTML: 0
  • Cited by: 0
History
  • Received:May 19,2021
  • Online: July 31,2022
Article QR Code