・综・述・

肾素血管紧张素系统与微炎症

赵 珏,窦京涛

(解放军总医院内分泌科,北京 100853)

【摘 要】高血压、糖尿病、脂质代谢紊乱和肥胖常常簇集出现而形成代谢综合征,严重影响公众的健康水平。近年来,代谢性疾病的微炎症背景备受学者关注,微炎症状态与代谢性疾病的发生发展密切关联。肾素-血管紧张素系统(RAS),除了血流动力学调节作用外,在微炎症反应中也发挥重要的作用。阻断 RAS,对代谢性疾病具有一定的保护作用。目前已证实,RAS主要通过血管紧张素转换酶-血管紧张素 -AT1受体(ACE-Ang -AT1R)轴和 ACE2-Ang(1-7)-Mas轴发挥作用,这两条途径具有相反的生物学活性,后者对前者有拮抗作用。血管紧张素 (Ang)由血管紧张素

受体介导通过多种机制发挥致炎作用,而 Ang (1-7)可以拮抗 Ang ,抑制炎症反应。本文就 RAS 参与微炎症反应的相关机制做一综述。

【关键词】肾素-血管紧张素系统;炎症;机制 【中图分类号】 R587.1 【文献标识码】

【文献标识码】 A 【DOI】 10.3724/SP.J.1264.2012.00036

Renin-angiotensin system and micro-inflammation

ZHAO Jue, DOU Jingtao

(Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China)

(Abstract) The cluster of hypertension, diabetes mellitus, dyslipidemia and body obesity, collectively referred to as the metabolic syndrome, is a common cause of atherosclerotic and cardiovascular diseases, and also one of the most serious threats to public health. Metabolic syndrome is closely related to micro-inflammation, which receives great attention in recent years. Besides the hemodynamic regulatory role, renin-angiotensin system (RAS) also plays an important role in micro-inflammation. Blockade of RAS could protect against the development of metabolic syndrome. It has been confirmed that RAS exerts its effects mainly through angiotensin converting enzyme(ACE)-angiotensin (Ang)-angiotensin 1 receptor(AT1R) axis and ACE2-Ang(1-7)-Mas axis, and the two approaches have opposite biological activities. Angiotensin(Ang) could initiate inflammation through a variety of mechanisms by its receptors, but the Ang1-7, as the antagonists to Ang , restrains the inflammation. In this paper, we reviewed the mechanism through which RAS is involved in micro-inflammation.

[Key words] renin-angiotensin system; inflammation; mechanism

微炎症反应是一种既不同于病原微生物感染, 又不同于全身炎症反应综合征的慢性特殊类型的炎 症过程。肾素-血管紧张素系统(renin-angiotensin system, RAS),特别是血管紧张素 (angiotensin , Ang),被证实除了具有血流动力学调节作用外, 还在微炎症反应中发挥重要的作用。本文就 RAS 参 与微炎症反应的相关机制做一综述。

1 RAS

近年来,对RAS的研究,以及血管紧张素转换 酶抑制剂和Ang 1型(AT1)受体拮抗剂的应用,引 发了心血管疾病、肾脏疾病乃至糖尿病治疗学的重

要变革^[1]。传统观念认为, Ang 是RAS发挥作用的 主要激素。来源于肝脏的血管紧张素原, 在肾素的 作用下转化为血管紧张素 (angiotensin , Ang), Ang 在血管紧张素转换酶 (angiotensin converting enzyme, ACE)的作用下转化为Ang , Ang 通过血 液循环分泌到靶组织, 与AT1受体 (angiotensin receptor, AT1R)结合, 引起醛固酮释放和血管收缩 等生理效应,调节机体的血压及血流变化,以及维 持机体血容量和水电解质平衡^[2]。随着研究的不断 深入, Ang 作为一种循环激素已无法解释全部RAS 的病理生理作用, RAS的概念被进一步的拓展开来, 逐步从经典的线性级联反应转变为一个多调节、多

收稿日期: 2011-03-01; 修回日期: 2011-04-20

通讯作者: 窦京涛, Tel: 010-66937425, E-mail: jingtaodou@sohu.com

受体、多功能的级联反应。国内外不断有学者在心 脏、血管壁、肾脏、脂肪以及脑部等局部组织发现 有RAS的表达^[3],其通过旁分泌或自分泌发挥作用。 局部RAS是独立作用的,但又与循环RAS相互影响, 共同参与和促进肥胖、2型糖尿病等代谢疾病的炎症 过程。另外、一些新的RAS成分被逐渐发现、其中与 Ang 关系最为密切的是Ang (1-7)。Ang (1-7)是 RAS重要的活性代谢产物^[4],由Ang 在ACE2的作 用下转化或由Ang 直接水解产生,并在ACE的作 用下转换为Ang(1-5),存在于血液循环或者心脏、 血管壁、肾脏和肝脏等局部组织中。Ang(1-7)与 G蛋白偶联受体Mas特异结合发挥作用,可对抗 Ang 引起的血管收缩、并具有抑制生长、抗氧化应 激、抗炎以及抗血栓形成等作用^[5]。ACE-Ang -AT1R轴和ACE2-Ang(1-7)-Mas轴为目前RAS发挥 作用的两大主要途径、这两条途径相互拮抗、以前 者为主[6]。

2 微炎症反应

肥胖、2型糖尿病、脂肪肝、动脉粥样硬化等代 谢异常的发生发展过程实质上与低反应性、全身性 的慢性炎症有着重要的联系。全身低反应性慢性炎 症也称为微炎症反应,是指一种非病原微生物感染 引起的、表现为全身循环中炎性蛋白、炎症性细胞 因子升高至正常范围高限,导致患者出现各种并发 症的低强度、慢性进展性、非显性炎症状态。日本 有学者在比较66名2型糖尿病患者和39名健康人时 发现,2型糖尿病患者血清白介素-6(interleukin-6, IL-6)、单核趋化因子-1 (monocyte chemotactic protein-1, MCP-1)等炎性因子的水平明显高于健康 人群,且这些炎性因子与尿蛋白排泄率、足动脉脉 搏、内膜厚度分别呈正相关,这一结果提示微炎症反 应是糖尿病肾病和动脉硬化的危险因子^[7]。美国心脏 协会目前已发表了关于C反应蛋白(C-reactive protein, CRP)测定的临床应用指南,支持CRP水平可作为 辅助的标准方法在一级预防人群中用于对心血管 疾病进行危险评价,以及在稳定型冠状动脉疾病 或急性冠脉综合征患者中用于对复发事件进行危 险评价,肯定了炎性因子在冠状动脉疾病的发生 发展中的价值。

值得一提的是, 微炎症反应不同于病原微生物 感染, 也不同于全身炎症反应综合征。具有持续及 相对隐匿性的特点。大多在肥胖、高血压、糖尿病 等慢性疾病的基础上, 血液中CRP, 细胞间黏附分 子-1 (intercellular adhesion molecule-1, ICAM-1)、血 管细胞黏附分子-1(vascular cell adhesion-1, VCAM-1)、肿瘤坏死因子(tumor necrosis factor, TNF)、IL-6、IL-1及补体成分等多种炎性因子水 平出现升高。临床及基础研究中常用以上指标来评 价炎症发展的水平,尤以CRP的应用最为广泛^[8]。

3 Ang 致炎的信号转导机制

近年来,众多研究表明 RAS 中 Ang 有致炎 作用。da Cunha 等^[9]为载脂蛋白 E 敲除大鼠 (apoE-KO) 皮下注射 Ang , 4 周后采用 RT-PCR 和免疫组化方法检测大鼠大动脉壁 E 选择素 (E-selectin)、ICAM-1、VCAM-1、MCP-1、巨噬细胞 集落刺激因子(macrophage colony stimulating factor, M-CSF) RNA 以及蛋白表达水平,均出现增高;颈动 脉粥样斑块的相对面积也增加6倍。Zhao等^[10]将Ang 注入野生型大鼠体内,利用免疫组化方法,检测到局 部血管内皮生长因子(vascular endothelial growth factor, VEGF) 表达增加; 当通过转染血管内皮生长 因子可溶性受体 1 基因阻遏 VEGF 的作用时、观察 到血管壁炎症反应及重塑减轻,从而证明了 Ang 介导的 VEGF 产生在动脉粥样硬化的发生发展中发 挥了重要作用。抑制 Ang 作用或者阻断其产生可 以有效减轻炎症反应,也有力地说明了 Ang 致炎 这一观点。对高血压患者的随机双盲试验发现坎地 沙坦能明显降低高血压患者血清 CRP 水平、增高脂 联素水平、改善胰岛素的敏感性^[11]。Stegbauer 等^[12] 发现在中枢神经多发性硬化的模型中, AT1R 阻滞剂 可以有效减少脊髓核内 CD11b 或 CD11c 标记的抗原提 成细胞。我们在观察 AT1 受体拮抗剂 (angiotensin receptor blocker, ARB) 对肥胖大鼠 IL-6, TNF-α等炎 性因子的影响时发现, 与正常大鼠相比, ARB 药物 可以显著抑制肥胖大鼠炎性因子的表达、改善胰岛 素抵抗^[13,14]。以上研究均表明, Ang 由 Ang 受体 介导通过多种机制发挥致炎作用。

3.1 Ang 受体

血管紧张素受体目前已发现4种亚型:AT1, AT2,AT(1-7)和AT4,Ang 主要作用于AT1、AT2 受体发挥作用^[15]。目前对AT1受体的研究比较明确, 其特异性受体阻滞剂也广泛应用于临床。在炎症反 应中,Ang 主要通过与AT1受体结合,激活核因子κB(nuclear factor-κB,NF-κB)和激活蛋白-1(activator protein-1,AP-1)而发挥作用,但部分研究发现AT2受 体在Ang 激发的炎症反应中也发挥作用。Wu等^[16] 用AT2R激动剂刺激同时表达ATIR和AT2R的胚胎 血管平滑肌细胞发现,AT2R激动剂能够增加核因子 κB抑制蛋白(inhibitor of NF- κ B, I κ B)的稳定性, 减 少 NF- κ B 与 DNA 的 结 合 从 而 减 少 AT1R 介 导 的 MCP-1的产生。Esteban等^[17]发现建立野生型小鼠单 侧输尿管梗阻模型2天后即出现间质细胞浸润和 NF- κ B的激活, AT1R或AT2R拮抗剂进行治疗后 NF- κ B的表达均减少。

3.2 Ang 致炎相关的转录因子

Ang 通过与AT1受体结合,激活NF-κB和AP-1 而发挥致炎作用,其中以NF-κB最受关注。

3.2.1 NF-κB NF-κB由Sen等于1986 年发现^[18]。 在静息细胞中主要以与p50和IκB构成的三聚体 (p50-p65- IkB)和与p50的蛋白前体p105构成的二 聚体(p105/p65)两种形式存在,这两种形式均未暴 露出NF-κB的核位置信号区,因此NF-κB不能向细 胞核内转移,处于无活性状态。胞外刺激信号可使 IκB和p105磷酸化, IκB磷酸化后即与p50-p65 解离, 暴露出NF-κB的核位置信号区,磷酸化的p105可被 蛋白酶水解成p50, 也暴露出NF-κB 的核位置信号 区,这就激活NF-κB,使NF-κB得以进入细胞核。 NF- κ B进入细胞核后与DNA上的 κ B位点结合、单独 或与其他转录因子协同作用,调节靶基因的表达。 研究表明, Ang 可增强 NF-кB的活性而发挥致炎 作用。Pan等^[19]将Ang 作用于大鼠原代血管内皮细 胞,发现细胞MCP-1的分泌增多,同时NF-κB转录 活性也增强, 且上述作用均可被Ang 受体拮抗剂 替米沙坦阻断。Shurk等^[20]的研究发现,运用NF-κB 阻滞剂干预人类脂肪细胞后, Ang 刺激细胞产生 IL-6和IL-8的作用被完全阻断。

Ang 可通过蛋白激酶C (protein kinase C, PKC)、蛋白激酶A (protein kinase A, PKA)、活性氧 (reactive oxygen species, ROS)等多种途径促进IkB 的降解, 增加NF-κB向核内的转运以及增强NF-κB 与DNA的亲和力、使得NF-кB发挥作用、其中最为 重要的是ROS途径。ROS是一组以氧为中心的基团 或非基团氧衍生物 (如H₂O₂, 单氧和次氯酸HOCl), NADPH氧化酶是产生ROS的关键酶, Ang 通过激活 NADPH氧化酶复合体而引起ROS的增加。Wei等^[21] 利用转基因技术获得Ang 高表达的动物模型 mRen2转基因鼠,与对照相比,mRen2转基因鼠主动 脉NADPH氧化酶活性、ROS水平以及CRP和TNF-α 表达均升高,血管壁增厚;应用缬沙坦或Tempol (超氧化物歧化酶SOD/过氧化氢酶类似物)治疗可 以改善转基因鼠的上述指标。Pueyo等^[22]用呼吸链抑 制剂抑制胞内ROS在线粒体内的合成、从而抑制了 Ang 诱导的IkB降解,由此证明ROS在Ang 诱导 的IκB降解中发挥了重要作用。另外,有学者发现, Ang 还可引起IκB激酶级联反应而导致NF-κB p65 丝氨酸536位点磷酸化,增加NF-κB向核内的转运, 从而激发炎症反应^[23]。

3.2.2 AP-1 AP-1家族是一类能与多种炎症因子 基因中的AP-1位点结合,发挥调节作用的核蛋白家 族,由c-Fos家族,c-Jun家族和转录激活因子家族组 成。有学者发现Ang 受体拮抗剂氯沙坦干预后,脂 多糖刺激神经小胶质细胞产生的炎性因子明显减少, 同时NF-κB和AP-1活性也减弱,由此判断AP-1在 Ang 介导的炎症反应中也发挥了一定的作用^[24]。

3.2.3 Ang 致炎相关的MAPK通路 丝裂原活化 蛋白激酶 (mitogen-activated protein kinase, MAPK) 是介导细胞反应的重要信号系统,广泛存在于生物 界、目前已经发现ERK、JNK、p38等MAPK亚族^[25]。 近年来国内外的很多研究表明, MAPK在介导炎症 反应和炎症细胞因子生成中起到了重要的作用。 Wang等^[26]在对150名哮喘患者血清炎性因子及相关 通路的研究中发现, MAPK通路在哮喘的病理生理 机制中扮演重要的角色、并且其水平与哮喘的严重 程度呈正相关; Mihaescu等^[27]发现, 放射性结肠炎 的动物模型中,其血清白介素、髓过氧化物酶等炎症 相关因子的水平升高,使用p38MAPK抑制剂 SB239063可以显著降低炎性因子的水平, 说明P38 信号通路参与了放射性结肠炎的发病; Lv等^[28]在脂 多糖诱导的肺泡 型细胞炎症反应中,发现TNF-α 和IL-6等炎性细胞因子表达增多、p38MAPK通路的 相关蛋白表达也增强, 说明Ang 致炎机制也可能 涉及MAPK通路; Guo等^[29]研究发现在人脐静脉内 皮细胞中Ang 通过AT1R途径使p38磷酸化而激活 p38MAPK, 且这种作用可以被氯沙坦阻断; 我们在 应用高通量基因表达谱芯片研究替米沙坦对成熟脂 肪细胞的影响时,同样发现MAPK信号途径所受影 响最大^[30]。关于MAPK通路参与Ang 的致炎机制 有待进一步研究。

4 Ang (1-7) 与炎症

作为 RAS 的新成员, Ang(1-7)在炎症反应中所 起的作用还处于探索阶段,目前认为 Ang(1-7)可能 拮抗 Ang ,具有抗炎作用。Sampaio 等^[31]发现人内 皮细胞中, Ang(1-7)具有拮抗 Ang 激活 NADPH 氧化酶的作用,但它并不能单独抑制 NADPH 氧化酶, 证明 Ang(1-7)可以拮抗 Ang ,抑制炎症反应。

总而言之, RAS 是一个庞大的复杂系统, 源于 血管紧张素原的各种代谢肽段不仅具有各自相对独 立的生物学效应, 而且这些不同的活性片段在代谢 和生物学效应上还相互影响、相互作用,形成复杂 的调节网络,共同参与机体炎症调节。随着研究的 不断深入,对 RAS 与炎症关系更加全面、具体的了 解,必将为肥胖、2 型糖尿病等代谢疾病的临床诊治 及预防提供新的思路和方法。

【参考文献】

- Perret-Guillaume C, Joly L, Jankowski P, *et al.* Benefits of the RAS blockade: clinical evidence before the ONTARGET study[J]. J Hypertens Suppl, 2009, 27(2): S3-S7.
- [2] Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis[J]. J Med Ivest, 2010, 57(1-2): 12-25.
- [3] Thatcher S, Yiannikouris F, Gupte M, et al. The adipose renin-angiotensin system: role in cardiovascular disease[J]. Mol Cell Endocrinol, 2009, 302(2): 111-117.
- [4] Simões e Silva AC, Pinheiro SV, Pereira RM, *et al.* The therapeutic potential of Angiotensin-(1-7) as a novel Renin-Angiotensin System mediator[J]. Mini Rev Med Chem, 2006, 6(5): 603-609.
- [5] Santos RA, Ferreira AJ. Angiotensin-(1-7) and the renin-angiotensin system[J]. Curr Opin Nephrol Hypertens, 2007, 16(2): 122-128.
- [6] Santos RA, Ferreira AJ, Simões E, *et al*. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis[J]. Exp Physiol, 2008, 93(5): 519-527.
- [7] Kajitani N, Shikata K, Nakamura A, et al. Microinflammation is a common risk factor for progression of nephropathy and atherosclerosis in Japanese patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2010, 88(2): 171-176.
- [8] Morrow DA, de Lemos JA, Sabatine MS, et al. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial[J]. Circulation, 2006, 114(4): 281-288.
- [9] da Cunha V, Tham DM, Martin-McNulty B, et al. Enalapril attenuates angiotensin -induced atherosclerosis and vascular inflammation[J]. Atherosclerosis, 2005, 178(1): 9-17.
- [10] Zhao Q, Ishibashi M, Hiasa K, *et al.* Essential role of vascular endothelial growth factor in angiotensin -induced vascular inflammation and remodeling[J]. Hypertension, 2004, 44(3): 264-270.
- [11] Koh KK, Quon MJ, Han SH, *et al.* Anti-inflammatory and metabolic effects of candesartan in hypertensive patients[J]. Int J Cardiol, 2006, 108(1): 96-100.
- [12] Stegbauer J, Lee DH, Seubert S, *et al.* Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system[J]. Proc Natl Acad Sci USA, 2009, 106(35): 14942-14947.
- [13] 窦京涛,母义明,陆菊明,等.血管紧张素 受体拮抗剂 对大鼠脂肪分泌瘦素、脂联素和 TNF-α的影响[J]. 解放军 医学杂志, 2006, 31(2): 138-140.
- [14] 闫文华, 窦京涛, 潘长玉, 等. 坎地沙坦改善高脂饮食大
 鼠胰岛素抵抗的效应[J]. 中华医学杂志, 2008, 88(38):
 2695-2699.
- [15] 蒲 丹, 唐朝枢. 血管紧张素多成员系统及各成员相互 作用[J]. 北京大学学报(医学版), 2005, 37(6), 661-665.
- [16] Wu L, Wai M, Li Z, et al. Regulation of inhibitory protein-kappaB and monocyte chemoattractant protein-1 by angiotensin type 2 receptor-activated Src homology

protein tyrosine phosphatase-1 in fetal vascular smooth muscle cells[J]. Mol Endocrinol, 2004, 18(3): 666-678.

- [17] Esteban V, Lorenzo O, Rupérez M, et al. Angiotensin, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction[J]. J Am Soc Nephrol, 2004, 15(6): 1514-1529.
- [18] Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappaB by a posttranslational mechanism[J]. Cell, 1986, 47(6): 921-928.
- [19] Pan Q, Yang XH, Cheng YX. Angiotensin stimulates MCP-1 production in rat glomerular endothelial cells *via* NAD(P)H oxidase-dependent nuclear factor-kappa B signaling[J]. Braz J Med Biol Res, 2009, 42(6): 531-536.
- [20] Skurk T, van Harmelen V, Hauner H. Angiotensin stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB[J]. Arterioscler Thromb Vasc Biol, 2004, 24(7): 1199-1203.
- [21] Wei Y, Whaley-Connell AT, Chen K, et al. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic(mRen2) rat[J]. Hypertension, 2007, 50(2): 384-391.
- [22] Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress[J]. Arterioscler Thromb Vasc Biol, 2000, 20(3): 645-651.
- [23] Douillette A, Bibeau-Poirier A, Gravel SP, et al. The proinflammatory actions of angiotensin are dependent on p65 phosphorylation by the IkappaB kinase complex[J]. J Biol Chem, 2006, 281(19): 13275-13284.
- [24] Miyoshi M, Miyano K, Moriyama N, et al. Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor kappaB and activator protein-1 activation[J]. Eur J Neurosc, 2008, 27(2): 343-351.
- [25] Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochim Biophys Acta, 2010, 1802(4): 396-405.
- [26] Wang YX, Xu XY, Su WL, et al. Activation and clinical significance of p38 MAPK signaling pathway in patients with severe trauma[J]. J Surg Res, 2010, 161(1): 119-125.
- [27] Mihaescu A, Santen S, Jeppsson B, et al. p38 Mitogenactivated protein kinase signalling regulates vascular inflammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis[J]. Br J Surg, 2010, 97(2): 226-234.
- [28] Lv XJ, Li YY, Zhang YJ, et al. Over-expression of caveolin-1 aggravate LPS-induced inflammatory response in AT-1 cells via up-regulation of cPLA2/p38 MAPK[J]. Inflamm Res, 2010, 59(7): 531-541.
- [29] Guo RW, Yang LX, Li MQ, et al. Angiotensin induces NF-kappa B activation in HUVEC via the p38MAPK pathway[J]. Peptides, 2006, 7(12): 3269-3275.
- [30] 陈 康, 窦京涛, 潘长玉, 等. 用高通量基因表达谱芯片 研究替米沙坦对成熟脂肪细胞的影响[J]. 中华老年多器 官疾病杂志, 2009, 8(5), 452-456.
- [31] Sampaio WO, Henrique de Castro C, Santos RA, et al. Angiotensin-(1-7) counterregulates angiotensin signaling in human endothelial cells[J]. Hypertension, 2007, 50(6): 1093-1098.